Đề thi cuối kì 1 Toán 11 Cánh diều Cấu trúc mới - Đề 3

348 174 lượt tải
Lớp: Lớp 11
Môn: Toán Học
Bộ sách: Cánh diều
Dạng: Đề thi Cuối kì 1
File: Word
Loại: Tài liệu lẻ
Số trang: 33 trang


CÁCH MUA:

Liên hệ ngay Hotline hỗ trợ: 084 283 45 85


Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD,  LỜI GIẢI CHI TIẾT và tải về dễ dàng.

Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!

  • 1

    Bộ 34 đề thi cuối kì 1 Toán 11 Cánh diều

    Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD,  LỜI GIẢI CHI TIẾT và tải về dễ dàng.

    Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!

    4.6 K 2.3 K lượt tải
    150.000 ₫
    150.000 ₫
  • Tailieugiaovien.com.vn giới thiệu bộ đề cuối kì 1 môn Toán 11 Cánh diều mới nhất nhằm giúp Giáo viên có thêm tài liệu tham khảo ra đề thi Toán lớp 11.
  • File word có lời giải chi tiết 100%.
  • Mua trọn bộ sẽ tiết kiệm hơn tải lẻ 50%.

Đánh giá

4.6 / 5(348 )
5
53%
4
22%
3
14%
2
5%
1
7%
Trọng Bình
Tài liệu hay

Giúp ích cho tôi rất nhiều

Duy Trần
Tài liệu chuẩn

Rất thích tài liệu bên VJ soạn (bám sát chương trình dạy)

Mô tả nội dung:

ĐỀ SỐ 3
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1. Tập giá trị của hàm số là A. . B. . C. . D. .
Câu 2. Tổng tất cả các nghiệm thuộc đoạn của phương trình là A. . B. . C. . D. . Câu 3. Cho dãy số , biết
. Mệnh đề nào sau đây sai? A. . B. . C. . D. .
Câu 4. Trong các dãy số sau, dãy số nào là một cấp số cộng? A. . B. C. D. . Câu 5. Cho . Khi đó bằng A. B. C. D.
Câu 6. Hàm số nào sau đây liên tục trên ? A. B. C. D.
Câu 7. Chọn mệnh đề sai. A. B. C. D.
Câu 8. Kết quả của giới hạn là A. . B. . C. . D. .
Câu 9. Yếu tố nào sau đây xác định một mặt phẳng duy nhất?
A. Ba điểm phân biệt.
B. Hai đường thẳng cắt nhau.
C. Bốn điểm phân biệt.
D. Một điểm và một đường thẳng.
Câu 10. Cho hình chóp tứ có đáy
là hình bình hành. Khẳng định nào sau đây sai? A. B. C. D.
Câu 11. Cho tứ diện Gọi
lần lượt là trọng tâm của các tam giác và
Khẳng định nào sau đây đúng? A. cắt B. song song C.
là hai đường thẳng chéo nhau. D. song song
Câu 12. Cho hình lăng trụ . Gọi
lần lượt là trọng tâm tam giác
. Mặt phẳng nào sau đây song song với ? A. B. C. D.
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b),
c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Câu 1. Cho biết và
. Khi đó các mệnh đề sau đúng sai? a) . b) . c) . d)
Câu 2. Cho cấp số nhân với .
a) Số hạng đầu và công bội của cấp số nhân là .
b) Số hạng thứ 7 của cấp số nhân là . c)
là số hạng thứ 11 của cấp số nhân. d) . Câu 3. Cho hàm số (m là tham số thực).
a) Hàm số liên tục trên khoảng . b) . c) . d) khi .
Câu 4. Cho hình hộp . Gọi
là trọng tâm của các tam giác . Khi đó: a) là hình bình hành. b) . c) cùng thuộc . d) .
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Câu 1. Một chất điểm dao động điều hòa theo phương trình , tính bằng giây và tính bằng
. Gọi là thời điểm đầu tiên vật có li độ lớn nhất (li độ là khoảng
cách từ vật đến vị trí cân bằng). Giá trị của bằng (làm tròn kết quả đến hàng phần trăm) bao nhiêu giây?
Câu 2. Nam đang tiết kiệm tiền để mua một cây guitar. Trong tuần đầu tiên, anh ta để dành
12 đô la, tuần thứ hai 15 đô la, tuần thứ ba 18 đô la và cứ như vậy mỗi tuần tiếp theo anh ta
để dành nhiều hơn tuần liền trước đó 3 đô la. Một cây guitar có giá ít nhất 567 đô la. Hỏi tối
thiểu vào tuần thứ bao nhiêu thì anh ấy có đủ tiền để mua một cây guitar?
Câu 3. Tính giới hạn
kết quả làm tròn đến hàng phần trăm.
Câu 4. Cho hình vuông
có độ dài bằng 1 . Nối các trung điểm của bốn cạnh hình vuông
, ta được hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh hình
vuông thứ hai, ta được hình vuông thứ ba. Tiếp tục như thế ta nhận được một dãy các hình
vuông. Tìm tổng chu vi của dãy các hình vuông đó (kết quả làm tròn đến hàng phần mười).
Câu 5. Cho hình chóp
có đáy là hình bình hành . Gọi lần lượt là trung điểm của cạnh
. Gọi là giao điểm của đường thẳng và mặt phẳng . Tính tỉ số .
Câu 6. Cho tứ diện và điểm là trung điểm . Gọi là mặt phẳng qua ,
song song với hai đường thẳng và . Gọi
lần lượt là giao điểm của mặt phẳng


zalo Nhắn tin Zalo