Đề thi HSG Toán 9 cấp tỉnh - Khánh Hòa năm học 2022 - 2023 có đáp án

886 443 lượt tải
Lớp: Lớp 9
Môn: Toán Học
Dạng: Đề thi, Đề thi HSG
File: Word
Loại: Tài liệu lẻ
Số trang: 7 trang


CÁCH MUA:

  • B1: Gửi phí vào TK: 0711000255837 - NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR)
  • B2: Nhắn tin tới Zalo VietJack Official ( nhấn vào đây ) để xác nhận thanh toán và tải tài liệu - giáo án

Liên hệ ngay Hotline hỗ trợ: 084 283 45 85


Tài liệu được cập nhật liên tục trong gói này từ nay đến hết tháng 3/2024. Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD,  LỜI GIẢI CHI TIẾT và tải về dễ dàng.

Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!

  • 1

    Bộ 45 đề thi HSG Toán 9 có đáp án

    Đề thi được cập nhật thêm mới liên tục hàng năm sau mỗi kì thi trên cả nước. Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD,  LỜI GIẢI CHI TIẾT và tải về dễ dàng.

    Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!

    6.1 K 3 K lượt tải
    300.000 ₫
    300.000 ₫
  • Tailieugiaovien.com.vn giới thiệu Đề thi HSG Toán 9 cấp tỉnh - Khánh Hòa năm học 2022 - 2023 có đáp án.
  • File word có lời giải chi tiết 100%.
  • Mua trọn bộ sẽ tiết kiệm hơn tải lẻ 50%.

Đánh giá

4.6 / 5(886 )
5
53%
4
22%
3
14%
2
5%
1
7%
Trọng Bình
Tài liệu hay

Giúp ích cho tôi rất nhiều

Duy Trần
Tài liệu chuẩn

Rất thích tài liệu bên VJ soạn (bám sát chương trình dạy)

Đây là b n xem th, vui lòng mua tài li u đ xem chi ti t (có l i gi i) ế
S GIÁO D C VÀ ĐÀO T O
KHÁNH HÒA
Đ THI CH N H C SINH GI I
NĂM H C 2020 - 2021
Môn: Toán – L p: 9
Th i gian m bài: 150 pt
Ngày: 3/12/2020
(Đ thi g m: 01 trang)
Câu 1. (4,0 đi m)
a) Rút g n
3
3 2 2 7 5 2A
.
b) Cho các s th c
, ,x y z
th a mãn
3x y z
2 2 2
x y z xy yz zx
. Tính
giá tr c a bi u th c
2020 2020 2020
B x y z xyz
.
Câu 2. (4,0 đi m )
a) Cho đa th c
2
( )f x x bx c
bi t r ng ế
( )f x
chia cho
4x
d 3, chia cho ư
1x
d 8.ư Tìm
.
b) Gi i ph ng trình: ươ
2 2 2
3 3 3
0
1
x x x x x
x
.
Câu 3. (5,0 đi m )
a) Ch ng minh r ng
2
2 2
2
2
a b
a b ab
v i m i s th c
,a b
.
b) Cho các s th c d ng ươ
, ,a b c
th a mãn đi u ki n
1abc
. Tìm giá tr l n nh t c a
bi u th c :
2 2 2 2 2 2
1 1 1
2 3 2 3 2 3
P
a b b c c a
.
Câu 4.
(5,0
đi m )
M i th c m c vui lòng xin liên h hotline: 084 283 45 85
ĐỀ CHÍNH THỨC
Đây là b n xem th, vui lòng mua tài li u đ xem chi ti t (có l i gi i) ế
Cho hình vuông
ABCD
. Đi m
I
thay đ i trên đ ng chéo ườ
BD
(đi m
I
khác
B
D
). G i
,M N
theo th t là chân đ ng vuông góc k t ườ
I
đ n ế
AB
.
a) Ch ng minh r ng
IM IN
không đ i.
b) Đ ng th ng ườ
d
đi qua
I
vuông góc v i
MN
. Ch ng minh đ ng th ng ườ
d
luôn
đi qua m t đi m c đ nh.
c) Xác đ nh v trí đi m
I
đ tam giác
CMN
có di n tích nh nh t.
Câu 5. (3,5 đi m )
a) Tìm t t c các c p s nguyên d ng ươ
( , )a b
sao cho:
2
1
1
a b
a
1
1
a
b
các s
nguyên.
b)Trên b n đ
2021
đ ng xu. Hai b n An Bình th c hi n m t s trò ch i b ng ơ
cách đi l n l t nh sau: m i ng i, đ n l t c a mình s l y đi m t s các đ ng xu ượ ư ườ ế ượ
sao cho c c a s các đ ng xu hi n trên bàn. Ng i l y đ ng xu l t cu iướ ườ ượ
cùng là thua. N u An đi tr c, Bình s dùng chi n thu t nh th nào đ chi n th ng?ế ướ ế ư ế ế
-----H T ------
M i th c m c vui lòng xin liên h hotline: 084 283 45 85
Đây là b n xem th, vui lòng mua tài li u đ xem chi ti t (có l i gi i) ế
ĐÁP ÁN THAM KH O – KHÁNH HÒA (2020 – 2021)
Câu 1.
a) Ta có
3
3 2 2 7 5 2A
2 3
3
2 1 2 1
2 1 2 1 2 
.
b)
2 2 2
x y z xy yz zx
2 2 2
0x y y z z x
x y z
3x y z
nên
1x y z
.
Do đó
2020 2020 2020
1 1 1 1 4B
.
Câu 2.
a) S d c a đa th c ư
( )f x
cho
x a
( )f a
, ta có:
2
2
( 4) 3 ( 4) 4 3 4
(1) 8 3
1 8
f b c b
f c
b c
.
V y
4; 3b c
.
b) ĐKXĐ:
1x
.
Ta có
2 2 2
3 3 3 0x x x x x
4 3 2
4 2 12 9 0x x x x
2
3 1 0x x
M i th c m c vui lòng xin liên h hotline: 084 283 45 85
Đây là b n xem th, vui lòng mua tài li u đ xem chi ti t (có l i gi i) ế
3 (TM)
1 (TM)
x
x
V y
1; 3x
.
Câu 3.
a)
2
2 2
2
2
a b
a b ab
v i m i s th c
,a b
.
Xét
2
2
2 2
0
2
a b
a b a b
đúng v i m i s th c
,a b
(1)
2
2
2 0
2
a b
ab a b
đúng v i m i s th c
,a b
(2)
T (1) và ( 2) ta có
2
2 2
2
2
a b
a b ab
.
b) Áp d ng b t đ ng th c Cô-si ta có
2 2
2a b ab
2
1 2 .b b
Suy ra
2 2
2a b
3 2( 1)ab b
.
Ta có:
2 2
1 1
2 3 2( 1)a b ab b
.
T ng t ươ
2 2
1 1
2 3 2( 1)b c bc c
;
2 2
1 1
2 3 2( 1)c a ac a
.
Đ t v trái c a BĐT c n ch ng minh là ế
A
, ta có:
1 1 1 1
2 1 1 1
A
ab b bc c ac a
1 1
( 1)
2 1 1 1
ab b
abc
ab b b ab ab b
1 1 1
2 1 2
ab b
ab b
.
M i th c m c vui lòng xin liên h hotline: 084 283 45 85
Đây là b n xem th, vui lòng mua tài li u đ xem chi ti t (có l i gi i) ế
D u “=” x y ra khi và ch khi
1a b c
.
V y giá tr l n nh t c a
P
2
2
khi
1a b c
.
Câu 4.
a) Kéo dài
MI
c t
t i
F
; kéo dài
NI
c t
BC
t i
E
.
Xét t giác
MIEB
90B M E
nên t giác
MIEB
là hình ch nh t .
BI
là đ ng phân giác nên hình ch nh t ườ
MIEB
là hình vuông.
T ng t t giác ươ
NDFI
là hình vuông
Ta có
IM IN AM BE
(do t giác
ANIM
là hình ch nh t)
AM BM
( Do
MIEB
là hình vuông)
=
AB
( không đ i)
b) Kéo dài
CI
c t
MN
t i
K
ta có
(c.g.c)NIM CEI
M i th c m c vui lòng xin liên h hotline: 084 283 45 85

Mô tả nội dung:


ệ đ xe m chi ti t ế (có l i ờ gi i ả ) S Ở GIÁO D C Ụ VÀ ĐÀO T O Đ Ề THI CH N Ọ H C Ọ SINH GI I KHÁNH HÒA NĂM H C Ọ 2020 - 2021 Môn: Toán – L p: ớ 9 ĐỀ CHÍNH THỨC Th i ờ gian làm bài: 150 phút Ngày: 3/12/2020 ề thi g m ồ : 01 trang)
Câu 1. (4,0 đi m ể ) 3 a) Rút g n
A  3  2 2  7  5 2 . 2 2 2 b) Cho các số th c
x, y, z th a m ỏ
ãn x y z 3
 và x y z xy yz zx . Tính 2020 2020 2020 giá trị c a bi ủ u t ể h c ứ B xyzxyz .
Câu 2. (4,0 đi m ) 2 a) Cho đa th c
f (x) x bx c bi t ế r ng
f (x) chia cho x  4 dư 3, chia cho x  1 d 8. ư Tìm b, c .  2
x x    2 x x   2 3 3 3  x 0  b) Gi i ả phư ng ơ trình: x 1 .
Câu 3. (5,0 đi m )  a b 2 2 2 a b  2  ab a) Ch ng ứ minh r ng ằ 2 v i ớ m i ọ số th c ự a, b . b) Cho các số th c ự dư ng
ơ a,b,c th a ỏ mãn đi u ề ki n ệ abc 1  . Tìm giá tr ị l n ớ nh t ấ c a ủ bi u t ể h c ứ : 1 1 1 P    2 2 2 2 2 2
a  2b  3 b  2c  3 c  2a  3 .
Câu 4. (5,0 đi m ) M i
ọ thắc mắc vui lòng xin liên hệ hotline: 084 283 45 85
ệ đ xe m chi ti t ế (có l i ờ gi i ả )
Cho hình vuông ABCD . Đi m
I thay đổi trên đư ng ờ chéo BD (đi m
I khác B D ). G i
M , N theo th t
ứ ự là chân đư ng vuông góc ờ k t ẻ ừ I đ n ế AB AD . a) Ch ng ứ minh r ng
IM IN không đổi. b) Đư ng ờ th ng
d đi qua I và vuông góc v i ớ MN . Ch ng ứ minh đư ng ờ th ng ẳ d luôn đi qua m t ộ đi m ể cố đ nh. ị
c) Xác định vị trí đi m ể I đ t
ể am giác CMN có diện tích nh nh ỏ t ấ .
Câu 5. (3,5 đi m ) 2 a b 1 a 1 a) Tìm t t ấ cả các c p ặ số nguyên dư ng
ơ (a,b) sao cho: a 1 và b  1 là các số nguyên. b) Trên b n
ả đồ có 2021 đồng xu. Hai b n ạ An và Bình th c ự hi n ệ m t ộ s ố trò ch i ơ b ng ằ cách đi l n ầ lư t ợ nh s ư au: m i ỗ ngư i ờ , đ n ế lư t ợ c a ủ mình s ẽ l y ấ đi m t ộ s ố các đ ng ồ xu sao cho nó là ư c ớ c a ủ số các đ ng ồ xu hi n ệ có trên bàn. Ngư i ờ l y ấ đ ng ồ xu lư t ợ cu i ố cùng là thua. N u ế An đi trư c, B ớ ình s dùng chi ẽ n t ế hu t ậ nh t ư h nào đ ế chi ể n t ế h ng? ắ -----HẾT------ M i
ọ thắc mắc vui lòng xin liên hệ hotline: 084 283 45 85
ệ đ xe m chi ti t ế (có l i ờ gi i ả ) ĐÁP ÁN THAM KH O
Ả – KHÁNH HÒA (2020 – 2021) Câu 1. 3
a) Ta có A  3  2 2  7  5 2    2    3 3 2 1 2 1  2  1   2   1  2 . 2 2 2
b) x y z xy yz zx
  x y 2   y z  2   z x 2 0 
x y z
x y z 3
 nên x y z 1  . Do đó 2020 2020 2020 B 1  1 1 1 4  . Câu 2. a) Số d c ư a đa t ủ h c
f (x) cho  x a là f (a) , ta có: 2  f ( 4) 3 
( 4)  4b c 3  b  4      2 f (1) 8    1  b c 8  c 3    . V y ậ b 4  ; c 3  . b) ĐKXĐ: x  1. 2 2 2
x x  3 x  3x  3  x 0 Ta có      4 3 2
x  4x  2x 12x  9 0  2
   x  3  x   1  0    M i
ọ thắc mắc vui lòng xin liên hệ hotline: 084 283 45 85
ệ đ xe m chi ti t ế (có l i ờ gi i ả )x 3  (TM)   x  1(TM)  V y ậ x  1;  3 . Câu 3. a b 2 2 2 a b  2  ab a) 2 v i ớ m i ọ số th c ự a, b .  a b2 a b
  a b 2 2 2 0  Xét 2 đúng v i ớ m i ọ số th c ự a, b (1)
a b 2  ab  a b2 2 0  2 đúng v i ớ m i ọ số th c ự a, b (2)  a b 2 2 2 a b  2  ab T ( ừ 1) và ( 2) ta có 2 . b) Áp d ng b ụ t ấ đ ng t ẳ h c ứ Cô-si ta có 2 2 a b 2  ab và 2 b 1 2  . b Suy ra 2 2 a  2b  3 2
 (ab b 1) . 1 1  2 2
Ta có: a  2b  3 2(ab b 1) . 1 1 1 1   2 2 2 2 Tư ng t ơ
b  2c  3 2(bc c 1) ; c  2a  3 2(ac a 1) . Đ t ặ v t ế rái c a B ủ ĐT c n ch ầ ng ứ minh là A, ta có: 1  1 1 1 A    
2  ab b 1 bc c 1 ac a 1        1  1 ab b
1 ab b 1 1    (vì abc 1  ) 2     ab b 1
b 1 ab 1 ab b        
2 ab b 1 2 . M i
ọ thắc mắc vui lòng xin liên hệ hotline: 084 283 45 85


zalo Nhắn tin Zalo