ĐỀ THAM KHẢO
KỲ THI TỐT NGHIỆP THPT QUỐC GIA NĂM 2024
PHÁT TRIỂN MINH HỌA BGD 2024 Bài thi môn: TOÁN
(Đề gồm có 06 trang)
Thời gian làm bài: 90 phút, không kể thời gian phát đề
Họ và tên thí sinh:……………………………………………… ĐỀ SỐ 2
Số báo danh:……………………………………………………. Câu 1: Cho hàm số
có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại điểm nào dưới đây? A. . B. . C. . D. . Câu 2: Nguyên hàm bằng A. . B. . C. . D. . Câu 3: Phương trình có nghiệm là A. . B. . C. . D. . Câu 4: Trong không gian , cho véctơ và điểm
, tọa độ điểm thỏa mãn là A. . B. . C. . D. . Câu 5:
Tiệm cận ngang của đồ thị hàm số có phương trình là: A. . B. . C. . D. . Câu 6:
Đồ thị của hàm số nào dưới đây có dạng như hình vẽ bên A. B. C. D.
Câu 7:
Tập xác định của hàm số là A. . B. . C. . D. . Câu 8: Trong không gian , cho đường thẳng
. Vectơ nào dưới đây là một vectơ chỉ phương của ? A. . B. . C. . D. . Câu 9: Cho số phức
, điểm nào dưới đây là điểm biểu diễn số phức ? A. . B. . C. . D. .
Câu 10: Trong không gian
, phương trình mặt cầu có tâm , bán kính bằng là A. . B. . C. . D. .
Câu 11: Với là số thực dương tùy ý, khi đó bằng A. . B. . C. . D. . Câu 12: Cho hàm số
có đồ thị như hình vẽ bên:
Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. . B. . C. . D. .
Câu 13: Một khối lăng trụ có diện tích đáy bằng 3 và thể tích bằng 6 thì chiều cao bằng A. . B. . C. . D. .
Câu 14: Tập nghiệm của bất phương trình là A. . B. . C. . D. .
Câu 15: Hàm số nào dưới đây nghịch biến trên ? A. . B. . C. . D. .
Câu 16: Trong không gian
, véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng ? A. . B. C. . D. . Câu 17: Cho hàm số
liên tục trên và có bảng xét dấu của đạo hàm như sau
Số điểm cực trị của hàm số đã cho là A. . B. . C. . D. . Câu 18: Nếu thì bằng A. . B. . C. . D. . Câu 19: Nếu thì bằng A. . B. . C. . D. .
Câu 20: Một khối chóp có đáy là hình vuông cạnh , chiều cao bằng có thể tích là A. . B. . C. . D. .
Câu 21: Cho hai số phức
. Phần ảo của số phức bằng A. 3. B. . C. . D. .
Câu 22: Một hình nón có diện tích xung quanh bằng
, bán kính đáy bằng thì độ dài đường sinh bằng A. . B. . C. . D. .
Câu 23: Một lớp học có 10 học sinh nam và 15 học sinh nữ. Có bao nhiêu cách chọn ra 3 học sinh của
lớp học sao cho trong 3 bạn được chọn có cả nam và nữ? A. . B. . C. . D. .
Câu 24: Họ các nguyên hàm của hàm số là A. . B. . C. . D. . Câu 25: Gọi
là hai giao điểm của đồ thị hàm số và đường thẳng . Khi đó
trung điểm của đoạn thẳng có tung độ là. A. . B. . C. . D. .
Câu 26: Một hình trụ có diện tích xung quanh bằng
và bán kính đáy là . Tính độ dài đường cao của hình trụ đó. A. . B. . C. . D. .
Câu 27: Cấp số nhân có
thì công bội của cấp số nhân này là A. . B. . C. . D. .
Câu 28: Cho số phức
. Phần ảo của số phức là A. . B. . C. . D.
Câu 29: Trong mặt phẳng với hệ toạ độ , biết điểm
là điểm biểu diễn số phức . Phần ảo của số phức bằng A. . B. . C. . D. .
Câu 30: Cho hình lập phương
(hình vẽ bên dưới). Góc giữa hai đường thẳng và bằng A. . B. . C. . D. .
Câu 31: Cho tứ diện có , , và . Tính khoảng cách từ đến mặt phẳng . A. . B. . C. . D. . Câu 32: Cho hàm số
liên tục trên và có đạo hàm . Hàm số
đồng biến trên khoảng nào dưới đây? A. . B. . C. . D. .
Câu 33: Có ba chiếc hộp: hộp I có 4 bi đỏ và 5 bi xanh, hộp II có 3 bi đỏ và 2 bi đen, hộp III có 5 bi đỏ
và 3 bi vàng. Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được màu đỏ bằng A. . B. . C. . D. . Câu 34: Nếu thì giá trị của bằng
Đề Tốt nghiệp Toán 2024 theo đề tham khảo (Đề 2)
223
112 lượt tải
MUA NGAY ĐỂ XEM TOÀN BỘ TÀI LIỆU
CÁCH MUA:
- B1: Gửi phí vào TK:
1053587071
- NGUYEN VAN DOAN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official ( nhấn vào đây ) để xác nhận thanh toán và tải tài liệu - giáo án
Liên hệ ngay Hotline hỗ trợ: 084 283 45 85
Đề thi được cập nhật liên tục trong gói này từ nay đến hết tháng 6/2024. Chúng tôi đảm bảo đủ số lượng đề đã cam kết hoặc có thể nhiều hơn, tất cả có BẢN WORD, LỜI GIẢI CHI TIẾT và tải về dễ dàng.
Để tải tài liệu gốc về máy bạn click vào nút Tải Xuống ở trên!
Thuộc bộ (mua theo bộ để tiết kiệm hơn):
- Bộ đề thi thử Tốt nghiệp THPT Quốc gia môn Toán năm 2024 theo đề tham khảo.
- File word có lời giải chi tiết 100%.
- Mua trọn bộ sẽ tiết kiệm hơn tải lẻ 50%.
Đánh giá
4.6 / 5(223 )5
4
3
2
1
Trọng Bình
Tài liệu hay
Giúp ích cho tôi rất nhiều
Duy Trần
Tài liệu chuẩn
Rất thích tài liệu bên VJ soạn (bám sát chương trình dạy)